Size and ionic currents of unexcitable cells coupled to cardiomyocytes distinctly modulate cardiac action potential shape and pacemaking activity in micropatterned cell pairs.

نویسندگان

  • Luke C McSpadden
  • Hung Nguyen
  • Nenad Bursac
چکیده

BACKGROUND Cardiac cell therapies can yield electric coupling of unexcitable donor cells to host cardiomyocytes with functional consequences that remain unexplored. METHODS AND RESULTS We micropatterned cell pairs consisting of a neonatal rat ventricular myocyte (NRVM) coupled to an engineered human embryonic kidney 293 (HEK293) cell expressing either connexin-43 (Cx43 HEK) or inward rectifier potassium channel 2.1 (Kir2.1) and Cx43 (Kir2.1+Cx43 HEK). The NRVM-HEK contact length was fixed yielding a coupling strength of 68.9±9.7 nS, whereas HEK size was systematically varied. With increase in Cx43 HEK size, NRVM maximal diastolic potential was reduced from -71.7±0.6 mV in single NRVMs to -35.1±1.3 mV in pairs with an HEK:NRVM cell surface area ratio of 1.7±0.1, whereas the action potential upstroke ([dV(m)/dt](max)) and duration decreased to 1.6±0.7% and increased to 177±32% in single NRVM values, respectively (n=21 cell pairs). Pacemaking occurred in all NRVM-Cx43 HEK pairs with cell surface area ratios of 1.1 to 1.9. In contrast, NRVMs, coupled with Kir2.1+Cx43 HEKs of increasing size, had similar maximal diastolic potentials, exhibited no spontaneous activity, and showed a gradual decrease in action potential duration (n=23). Furthermore, coupling single NRVMs to a dynamic clamp model of HEK cell ionic current reproduced the cardiac maximal diastolic potentials and pacemaking rates recorded in cell pairs, whereas reproducing changes in (dV(m)/dt)(max) and action potential duration required coupling to an HEK model that also included cell membrane capacitance. CONCLUSIONS Size and ionic currents of unexcitable cells electrically coupled to cardiomyocytes distinctly affect cardiac action potential shape and initiation with important implications for the safety of cardiac cell and gene therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Electrotonic loading of anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level.

Understanding how electrotonic loading of cardiomyocytes by unexcitable cells alters cardiac impulse conduction may be highly relevant to fibrotic heart disease. In this study, we optically mapped electrical propagation in confluent, aligned neonatal rat cardiac monolayers electrotonically loaded with cardiac fibroblasts, control human embryonic kidney (HEK-293) cells, or HEK-293 cells genetica...

متن کامل

Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording

  While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...

متن کامل

Defective "pacemaker" current (Ih) in a zebrafish mutant with a slow heart rate.

At a cellular level, cardiac pacemaking, which sets the rate and rhythm of the heartbeat, is produced by the slow membrane depolarization that occurs between action potentials. Several ionic currents could account for this pacemaker potential, but their relative prominence is controversial, and it is not known which ones actually play a pacemaking role in vivo. To correlate currents in individu...

متن کامل

Human atrial fibroblasts and their contribution to supraventricular arrhythmia.

The healthy heart is heavily populated with fibroblasts. The mouse heart contains 56% cardiomyocytes, 27% fibroblasts, 7% endothelial cells, and 10% vascular smooth muscle cells, based on a study where hearts were enzymatically digested and the cells immunolabeled and sorted according to fluorescence, FACS (Banerjee et al. 2007). Another study from rat heart reports only 30–35% cardiomyocytes a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2012